首页 >> 最新文章

智能MBR污水处理设备金属玻璃表

时间:2019/12/30 10:53:51 编辑:

智能MBR污水处理设备

水解-酸化工艺机理水解-酸化工艺的基本原理水解-酸化工艺可以从有机物的厌氧分解过程的分析得出。有机物的厌氧分解一般可以分解为三个阶段,第一阶段是由兼性细菌产生的水解酶类将大分子物质或不溶性物质水解成低分子可溶性的有机物,这一阶段主要是促使有机物增加溶解性。第二阶段为产酸和脱氢阶段。它把水解形成的溶性小分子由产酸菌氧化成为低分子的有机酸等,并合成新的细胞物质。第三阶段是由产甲烷细菌把第二阶段的产物进一步氧化成甲烷、二氧化碳等,并合成新的细胞物质。难降解的有机化合物通常都是一些大分子的有机化合物、纤维素等,这类污染物的降解首先要经过水解过程,而好氧微生物的水解能力很弱,致使有机物降解缓慢。[1]厌氧生物处理恰恰利用了水解-酸化阶段,使一些难降解的物质得到降解。只要适应水解-酸化的微生物菌群生成,就可以使一些难降解的物质得到降解。1967年,人们发现氯代烃在厌氧条件下可以脱氯而分解为较易生物降解的中间体。[2]在水解和酸化阶段,主要微生物为水解菌和产酸菌,他们均为兼性细菌,利用水解菌和产酸菌,将大分子、难降解的有机物降解为小分子有机物,改善废水的可生化性,为后续处理创造有利条件。

水解-酸化预处理工艺的特点水解和酸化处理过程不需要曝气但又不绝对厌氧,它不以产甲烷为目标,仅是厌氧处理的中间过程.与完全厌氧工艺相比,有如下特点:(1)难降解的有机废水经水解-酸化处理后,BOD5/CODcr比值,有明显的提高;(2)不需要严格的厌氧条件,工艺运行比较稳定,对环境温度在15℃~35℃之间、pH在6.5~9.0之间的变化范围内不很敏感,便于操作控制;(3)相对厌氧处理而言,水力停留时间短,对工业污水中的有机污染物,根据其分子结构、分子量大小,水解反应一般在4-12h完成。所需反应器体积较小,可节省工程投资;(4)水解和产酸菌的繁殖速度比产甲烷菌快,驯化培养时间较短。采用软性纤维填料的膜法水解-酸化生物工艺,由于生物量大、容积负荷高,能适应进水CODcr浓度的变化,且抗冲击负荷的能力也较强。(5)水解-酸化池不产生厌氧反应那样的臭味,它可以设计成敞开式。水解-酸化池的设计深度要尽量深一点,在4-8m之间。生物脱氮原理生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件:硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。生物除磷原理磷常以磷酸盐、聚磷酸盐和有机磷的形式存在于废水中,生物除磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。

白癜风专题

黑龙江盛京银屑病医院

重庆景城胃肠医生

腕表全叔

相关资讯